| | 1 | |
| | 2 | == Making diffusion maps with Slingshot == |
| | 3 | |
| | 4 | You can either assigned cells to clusters based on [https://bioconductor.org/packages/release/bioc/vignettes/slingshot/inst/doc/vignette.html | Slingshot protocol ] or make a single cell object, i.e. from the Seurat object. Example commands for convert to single cell object from Seurat. |
| | 5 | |
| | 6 | * **Making a single cell object from a Seurat object** |
| | 7 | {{{ |
| | 8 | library(Seurat) |
| | 9 | library(SingleCellExperiment) |
| | 10 | sce <- as.SingleCellExperiment(seuratObject) |
| | 11 | #this has the cell classification |
| | 12 | table(sce$ident) |
| | 13 | }}} |
| | 14 | |
| | 15 | == Calculate pseudotime and lineages with Slingshot == |
| | 16 | |
| | 17 | You can use either PCA/UMAP/TSNE for reduction. Since Slingshot is designed for cases in which cells fall along a continuous trajectory, it's better to use PCA if clearly discrete clusters in UMAP, as mentioned in [https://github.com/kstreet13/slingshot/issues/43 | Slingshot github page] |
| | 18 | |
| | 19 | {{{ |
| | 20 | sce <- slingshot(sce, clusterLabels = ident, reducedDim = "PCA", |
| | 21 | allow.breaks = FALSE) |
| | 22 | # get the lineages: |
| | 23 | lnes <- getLineages(reducedDim(sce,"PCA"), sce$ident) |
| | 24 | lnes@lineages |
| | 25 | |
| | 26 | }}} |
| | 27 | |
| | 28 | If you know the which cluster is the origin ( last cluster), you can assign starting cluster/last cluster: |
| | 29 | |
| | 30 | {{{ |
| | 31 | sce <- slingshot(sce, clusterLabels = ident, reducedDim = "PCA", |
| | 32 | allow.breaks = FALSE, start.clus="2") |
| | 33 | # get the lineages: |
| | 34 | lnes <- getLineages(reducedDim(sce2,"PCA"), |
| | 35 | sce2$ident, start.clus = "2") |
| | 36 | lnes@lineages |
| | 37 | }}} |
| | 38 | |
| | 39 | == Visualize the pseudotime or lineages == |
| | 40 | |
| | 41 | draw plot with first pseudotime as x-axis, and y-axis is the cell type. If you have multiple lineages, cells that were identified as being specific to Lineage 2 will have NA values for slingPseudotime_1 ( [https://github.com/kstreet13/slingshot/issues/42 | slingshot github page] ) |
| | 42 | |
| | 43 | {{{ |
| | 44 | |
| | 45 | library(Polychrome) |
| | 46 | library(ggbeeswarm) |
| | 47 | library(ggthemes) |
| | 48 | |
| | 49 | my_color <- createPalette(length(levels(sce$ident)), c("#010101", "#ff0000"), M=1000) |
| | 50 | names(my_color) <- unique(as.character(sce$ident)) |
| | 51 | |
| | 52 | slingshot_df <- data.frame(colData(sce)) |
| | 53 | |
| | 54 | # re-order y-axis for better figure: |
| | 55 | slingshot_df$ident = factor(slingshot_df$ident, levels=c(4,2,1,0,3,5,6)) |
| | 56 | |
| | 57 | ggplot(slingshot_df, aes(x = slingPseudotime_1, y = ident, |
| | 58 | colour = ident)) + |
| | 59 | geom_quasirandom(groupOnX = FALSE) + theme_classic() + |
| | 60 | xlab("First Slingshot pseudotime") + ylab("cell type") + |
| | 61 | ggtitle("Cells ordered by Slingshot pseudotime")+scale_colour_manual(values = my_color) |
| | 62 | |
| | 63 | |
| | 64 | }}} |
| | 65 | |
| | 66 | # plot Lineages along the cells in PCAs |
| | 67 | |
| | 68 | {{{ |
| | 69 | |
| | 70 | plot(reducedDims(sce)$PCA, col = my_color[as.character(sce$ident)], |
| | 71 | pch=16, |
| | 72 | asp = 1) |
| | 73 | legend("bottomleft",legend = names(my_color[levels(sce$ident)]), |
| | 74 | fill = my_color[levels(sce$ident)]) |
| | 75 | lines(SlingshotDataSet(lnes), lwd=2, type = 'lineages', col = c("black")) |
| | 76 | |
| | 77 | }}} |
| | 78 | |