Changes between Version 16 and Version 17 of SOP/scRNA-seq


Ignore:
Timestamp:
08/05/20 13:13:45 (4 years ago)
Author:
twhitfie
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOP/scRNA-seq

    v16 v17  
    9999}}}
    100100
    101     * Using Harmony from within Seurat (please see I. Korsunsky ''et al.'' “Fast, sensitive and accurate integration of single-cell data with Harmony”, ''Nature Methods'' '''16''', 1289-1296 (2019) and the documentation for the RunHarmony function):
     101    * Using Harmony from within Seurat (please see I. Korsunsky ''et al.'' “Fast, sensitive and accurate integration of single-cell data with Harmony”, ''Nature Methods'' '''16''', 1289-1296 (2019), the details of the Harmony algorithm linked below and the documentation for the RunHarmony function):
    102102{{{
    103103library(Seurat)
     
    121121}}}
    122122
    123    * Using LIGER (v 0.4.2.9000) from within Seurat (please see J.D. Welsh ''et al.'' “Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity”, ''Nature Biotechnology'' '''37''', 1873–1887 (2019) and the documentation for the RunOptimizeALS and RunQuantileAlignSNF functions):
     123   * Using LIGER (v 0.4.2.9000) from within Seurat (please see J.D. Welsh ''et al.'' “Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity”, ''Nature Biotechnology'' '''37''', 1873–1887 (2019), the LIGER documentation/vignettes the documentation for the RunOptimizeALS and RunQuantileAlignSNF functions):
    124124{{{
    125125library(Seurat)
     
    140140all <- RunQuantileAlignSNF(all, split.by = "batch")
    141141
    142 # When generating UMAP or another embedding, be sure to use the reduction from integrated nonnegative factorization ("iNMF").
     142# When generating UMAP or another embedding, be sure to use the reduction from the integrated nonnegative factorization ("iNMF").
    143143all <- RunUMAP(all, dims = 1:ncol(all[["iNMF"]]), reduction = "iNMF")
     144
     145# The commands above use default values for the default values for the rank, k, of the NMF and the homogeneity parameter, lambda.
     146# Generally, the rank should be chosen to be large enough to capture structure in the data matrix, yet small enough that the factorization
     147# gives reproducible interpretations under multiple non-unique solutions. Increasing the homogeneity parameter places greater emphasis
     148# on the common factors in the integration.  The heuristic functions suggestK and suggestLambda can be used to guide the data-set-specific
     149# adjustment of these two parameters.
    144150}}}
    145151=== Export expression and dimensional analysis data for interactive viewing ===
     
    176182    * [https://learn.gencore.bio.nyu.edu/single-cell-rnaseq/  Single cell RNA sequencing, NYU].
    177183    * [https://github.com/seandavi/awesome-single-cell Awesome-single-cell, Sean Davis]
     184    * [http://htmlpreview.github.io/?https://github.com/immunogenomics/harmony/blob/master/docs/advanced.html, Detailed Harmony walkthrough]
     185    * [https://macoskolab.github.io/liger/, LIGER instructions and vignettes]