Changes between Version 20 and Version 21 of SOP/scRNA-seq


Ignore:
Timestamp:
08/25/20 15:30:21 (4 years ago)
Author:
ibarrasa
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOP/scRNA-seq

    v20 v21  
    4545=== Run quality control and filter cells ===
    4646
    47 We typically use the [https://satijalab.org/seurat/ Seurat] R package for these steps.
     47We typically use the [https://satijalab.org/seurat/ Seurat] R package for these steps. The commands below are for Seurat 3.
    4848
    4949    * Start out by loading the counts matrix from cellranger:
     
    5252message("Loaded Seurat version", packageDescription("Seurat")$Version)
    5353# Load the barcodes*, features*, and matrix* files in your 10x Genomics directory
    54 counts.all <- Read10X(data.dir = input.counts.filename)
    55 }}}
    56 
     54counts.data <- Read10X(data.dir = input.counts.filename)
     55}}}
     56
     57    * This is how you would load the counts from a file with gene counts:
     58{{{
     59library("Seurat")
     60message("Loaded Seurat version", packageDescription("Seurat")$Version)
     61counts.data <- read.table(file = paste0("./exp1_forSeurat.txt"))
     62}}}
     63
     64    * Example of input data if starting with gene counts (only a few samples): 
     65{{{
     66E25-35_A4       E25-35_A5       E25-35_A6       E25-35_B4       E25-35_B5       E25-35_B6       E25-35_C4       E25-35_C5       E25-35_C6
     67ENSMUSG00000064372_mt-Tp        7       10      7       10      3       17      13      4
     68ENSMUSG00000064371_mt-Tt        0       0       0       1       0       5       0       0
     69}}}
     70    * Make the Seurat object and calculate the percentage of mitochondrial reads
     71{{{
     72seuratObject <- CreateSeuratObject(counts = counts.data,project = "ProjectName")
     73seuratObject[["percent.mt"]] <- PercentageFeatureSet(object = seuratObject, pattern = "^mt-")
     74}}}
     75=== Filter cells with high % reads mapping to mitochondrial transcripts and with low number of genes detected ===
     76These cutoffs are specific for each experiment
     77{{{
     78MIN.NUM.GENES = 200
     79MAX.NUM.GENES = 8000
     80MAX.PERCENT.MITO = 20
     81all_Filt <- subset(x = seuratObject, subset = nFeature_RNA > MIN.NUM.GENES & nFeature_RNA < MAX.NUM.GENES & percent.mt < MAX.PERCENT.MITO)
     82}}}
     83
     84=== Normalize data ===
     85{{{
     86all_Filt <- NormalizeData(object = all_Filt, normalization.method = "LogNormalize", scale.factor = 10000)
     87}}}
     88
     89=== Identify of highly variable features ===
     90{{{
     91num.variable.features.to.find = 2000
     92all_Filt <- FindVariableFeatures(object = all_Filt, selection.method = "vst", nfeatures = num.variable.features.to.find)
     93
     94}}}
     95=== Scale data ===
     96{{{
     97all.genes <- rownames(x = all_Filt)
     98all_Filt <- ScaleData(object = all_Filt, features = all.genes)
     99}}}
    57100
    58101=== Perform and visualize dimensional analysis ===
    59 
     102{{{
     103all_Filt <- RunPCA(object = all_Filt, features = VariableFeatures(object = all_Filt))
     104}}}
    60105=== Partition cells into clusters ===
    61106