Changes between Version 21 and Version 22 of SOP/scRNA-seq


Ignore:
Timestamp:
08/25/20 15:59:31 (4 years ago)
Author:
ibarrasa
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOP/scRNA-seq

    v21 v22  
    9191num.variable.features.to.find = 2000
    9292all_Filt <- FindVariableFeatures(object = all_Filt, selection.method = "vst", nfeatures = num.variable.features.to.find)
    93 
    9493}}}
    9594=== Scale data ===
     
    10099
    101100=== Perform and visualize dimensional analysis ===
     101Perform principal components analysis
    102102{{{
    103103all_Filt <- RunPCA(object = all_Filt, features = VariableFeatures(object = all_Filt))
     104pdf("./PCAPlot.pdf", w=11, h=8.5)
     105DimPlot(object = all_Filt, reduction = "pca")
     106DimPlot(object = all_Filt, dims = c(3, 4), reduction = "pca")
     107dev.off()
     108
     109pdf("ElbowPlot.pdf", w=11, h=8.5)
     110ElbowPlot(object = all_Filt)
     111dev.off()
     112}}}
     113Based on the elbow plot decide how many components to use to run UMAP, tSNE and the Louvain clustering.
     114Run non-linear dimensional reduction (UMAP/tSNE)
     115{{{
     116all_Filt <- RunUMAP(object = all_Filt, dims = 1:20)
     117all_Filt <- RunTSNE(object = all_Filt, dims = 1:20)
     118pdf("./UMAP_colorByExp.pdf", w=11, h=8.5)
     119DimPlot(object = all_Filt, reduction = "umap")
     120dev.off()
     121pdf("./TSNE_colorByExp.pdf", w=11, h=8.5)
     122TSNEPlot(object = all_Filt)
     123dev.off()
    104124}}}
    105125=== Partition cells into clusters ===
    106 
     126Run Louvain clustering using different resolutions to then decide which one to follow up on for further analysis.
     127The resolution chosen depends on the granularity we want to work with and the cell heterogeneity.
     128{{{
     129all_Filt <- FindNeighbors(object = all_Filt, dims = 1:20)
     130all_Filt <- FindClusters(object = all_Filt, resolution = 0.5)
     131pdf("./UMAP_colorByCluster_Res0.5.pdf", w=11, h=8.5)
     132UMAPPlot(object = all_Filt, label= TRUE)
     133dev.off()
     134all_Filt <- FindClusters(object = all_Filt, resolution = 0.4)
     135pdf("./UMAP_colorByCluster_Res0.4.pdf", w=11, h=8.5)
     136UMAPPlot(object = all_Filt, label= TRUE)
     137dev.off()
     138all <- FindClusters(object = all_Filt, resolution = 0.3)
     139pdf("./UMAP_colorByCluster_Res0.3.pdf", w=11, h=8.5)
     140UMAPPlot(object = all_Filt, label= TRUE)
     141dev.off()
     142}}}
     143The clustering at different resolutions are store in all_Filt$RNA_snn_res.0.3 all_Filt$RNA_snn_res.0.4 all_Filt$RNA_snn_res.0.5
    107144=== Identify genes that differentially expressed between samples or clusters ===
    108145