| | 104 | pdf("./PCAPlot.pdf", w=11, h=8.5) |
| | 105 | DimPlot(object = all_Filt, reduction = "pca") |
| | 106 | DimPlot(object = all_Filt, dims = c(3, 4), reduction = "pca") |
| | 107 | dev.off() |
| | 108 | |
| | 109 | pdf("ElbowPlot.pdf", w=11, h=8.5) |
| | 110 | ElbowPlot(object = all_Filt) |
| | 111 | dev.off() |
| | 112 | }}} |
| | 113 | Based on the elbow plot decide how many components to use to run UMAP, tSNE and the Louvain clustering. |
| | 114 | Run non-linear dimensional reduction (UMAP/tSNE) |
| | 115 | {{{ |
| | 116 | all_Filt <- RunUMAP(object = all_Filt, dims = 1:20) |
| | 117 | all_Filt <- RunTSNE(object = all_Filt, dims = 1:20) |
| | 118 | pdf("./UMAP_colorByExp.pdf", w=11, h=8.5) |
| | 119 | DimPlot(object = all_Filt, reduction = "umap") |
| | 120 | dev.off() |
| | 121 | pdf("./TSNE_colorByExp.pdf", w=11, h=8.5) |
| | 122 | TSNEPlot(object = all_Filt) |
| | 123 | dev.off() |
| 106 | | |
| | 126 | Run Louvain clustering using different resolutions to then decide which one to follow up on for further analysis. |
| | 127 | The resolution chosen depends on the granularity we want to work with and the cell heterogeneity. |
| | 128 | {{{ |
| | 129 | all_Filt <- FindNeighbors(object = all_Filt, dims = 1:20) |
| | 130 | all_Filt <- FindClusters(object = all_Filt, resolution = 0.5) |
| | 131 | pdf("./UMAP_colorByCluster_Res0.5.pdf", w=11, h=8.5) |
| | 132 | UMAPPlot(object = all_Filt, label= TRUE) |
| | 133 | dev.off() |
| | 134 | all_Filt <- FindClusters(object = all_Filt, resolution = 0.4) |
| | 135 | pdf("./UMAP_colorByCluster_Res0.4.pdf", w=11, h=8.5) |
| | 136 | UMAPPlot(object = all_Filt, label= TRUE) |
| | 137 | dev.off() |
| | 138 | all <- FindClusters(object = all_Filt, resolution = 0.3) |
| | 139 | pdf("./UMAP_colorByCluster_Res0.3.pdf", w=11, h=8.5) |
| | 140 | UMAPPlot(object = all_Filt, label= TRUE) |
| | 141 | dev.off() |
| | 142 | }}} |
| | 143 | The clustering at different resolutions are store in all_Filt$RNA_snn_res.0.3 all_Filt$RNA_snn_res.0.4 all_Filt$RNA_snn_res.0.5 |