Changes between Initial Version and Version 1 of SOPs/AlphaFoldMultimer


Ignore:
Timestamp:
04/23/24 06:23:27 (10 months ago)
Author:
twhitfie
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOPs/AlphaFoldMultimer

    v1 v1  
     1== Predicting protein structure from sequence using AlphaFold ==
     2
     3=== Background ===
     4The success of [https://www.nature.com/articles/s41586-021-03819-2 DeepMind's AlphaFold protein folding algorithm] in the CASP14 structural prediction assessment has been widely celebrated and has profoundly invigorated the structural biology community. Today, if you have a protein sequence for which you'd like to learn a high quality predicted structure, an excellent place to start is the [https://alphafold.ebi.ac.uk/ AlphaFold Protein Structure Database]. An alternative database to search is the [https://esmatlas.com/resources?action=fold ESM Metagenomic Atlas], where you may find predicted structures for orphan proteins with few sequence homologs.
     5
     6=== Running AlphaFold using ChimeraX ===
     7
     8If you cannot find a predicted structure for your protein within the databases listed above, perhaps because amino acid substitutions relative to the reference sequence are present, [https://www.cgl.ucsf.edu/chimerax/ ChimeraX] is an [https://www.youtube.com/watch?v=gIbCAcMDM7E easy place to start due to its graphical user interface] and convenient visualization tools.  You will need to install ChimeraX on a desktop or laptop computer, but the AlphaFold predictions will be made using computing resources in the cloud.
     9
     10=== Running AlphaFold using computing resources at Whitehead ===
     11
     12It may happen that the freely available computational resources accessed via ChimeraX are a constraint on completing your AlphaFold predictions.  In that case, you can make the predictions locally using a command like the following:
     13 
     14{{{
     15sbatch --export=ALL,FASTA_NAME=example.fa,USERNAME='user',FASTA_PATH=/path/to/fasta/file,AF2_WORK_DIR=/path/to/working/directory ./RunAlphaFold_2.3.2_slurm.sh
     16}}}
     17
     18In the command above, substitute your own user id, fasta file and the paths to both the fasta file and the working directory.  In this example, the job that is submitted to the SLURM scheduler might look like:
     19
     20{{{
     21#!/bin/bash
     22
     23#SBATCH --job-name=AF2                  # friendly name for job.
     24#SBATCH --nodes=1                       # ensure cores are on one node
     25#SBATCH --ntasks=1                      # run a single task
     26#SBATCH --cpus-per-task=8               # number of cores/threads requested.
     27#SBATCH --mem=64gb                      # memory requested.
     28#SBATCH --partition=nvidia-t4-20        # partition (queue) to use
     29#SBATCH --output output-%j.out          # %j inserts jobid to STDOUT
     30#SBATCH --gres=gpu:1                    # Required for GPU access
     31
     32export TF_FORCE_UNIFIED_MEMORY=1
     33export XLA_PYTHON_CLIENT_MEM_FRACTION=4
     34
     35export OUTPUT_NAME='model_1'
     36export ALPHAFOLD_DATA_PATH='/alphafold/data.2023b' # Specify ALPHAFOLD_DATA_PATH
     37
     38cd $AF2_WORK_DIR
     39singularity run -B $AF2_WORK_DIR:/af2 -B $ALPHAFOLD_DATA_PATH:/data -B .:/etc --pwd /app/alphafold --nv /alphafold/alphafold_2.3.2.sif --data_dir=/data/ --output_dir=/af2/$FASTA_PATH --fasta_paths=/af2/$FASTA_PATH/$FASTA_NAME --max_template_date=2050-01-01 --db_preset=full_dbs --bfd_database_path=/data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt --uniref30_database_path=/data/uniref30/UniRef30_2023_02 --uniref90_database_path=/data/uniref90/uniref90.fasta --mgnify_database_path=/data/mgnify/mgy_clusters_2022_05.fa --template_mmcif_dir=/data/pdb_mmcif/mmcif_files --obsolete_pdbs_path=/data/pdb_mmcif/obsolete.dat --use_gpu_relax=True --model_preset=monomer --pdb70_database_path=/data/pdb70/pdb70
     40
     41# Email the STDOUT output file to specified address.
     42/usr/bin/mail -s "$SLURM_JOB_NAME $SLURM_JOB_ID" $USERNAME@wi.mit.edu < $AF2_WORK_DIR/output-${SLURM_JOB_ID}.out
     43}}}