Changes between Version 3 and Version 4 of SOPs/AlphaFoldMultimer


Ignore:
Timestamp:
04/23/24 07:12:32 (9 months ago)
Author:
twhitfie
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOPs/AlphaFoldMultimer

    v3 v4  
    66=== Running AlphaFold-Multimer using ChimeraX ===
    77
    8 As with structure prediction for monomeric proteins, [https://www.cgl.ucsf.edu/chimerax/ ChimeraX] is a good [https://www.youtube.com/watch?v=6lXeCPuTePs starting point due to its intuitive graphical user interface] and convenient visualization tools.  You will need to install ChimeraX on a desktop or laptop computer, but the AlphaFold predictions will be made using computing resources in the cloud.
     8As with structure prediction for monomeric proteins, [https://www.cgl.ucsf.edu/chimerax/ ChimeraX] is a good [https://www.youtube.com/watch?v=6lXeCPuTePs starting point due to its intuitive graphical user interface] and convenient visualization tools.  You will need to install ChimeraX on a desktop or laptop computer, but the AlphaFold predictions will be made using computing resources in the cloud via the [https://www.nature.com/articles/s41592-022-01488-1 ColabFold] implementation of AlphaFold, which uses [https://www.nature.com/articles/nbt.3988 MMseqs2] to efficiently compute an initial multiple sequence alignment (MSA).
    99
    1010=== Running AlphaFold using computing resources at Whitehead ===
    1111
    12 It may happen that the freely available computational resources accessed via ChimeraX are a constraint on completing your AlphaFold predictions.  In that case, you can make the predictions locally using a command like the following:
     12It may happen that the freely available computational resources accessed via ChimeraX are a constraint on completing your AlphaFold-Multimer predictions.  In that case, there are multiple ways that you can make the predictions locally.  One way is to make use of the ColabFold implementation of AlphaFold-Multimer, which makes use of MMseqs2 from the initial MSA step.
    1313 
     14{{{
     15sbatch
     16}}}
     17
     18In the command above, substitute your own user id, fasta file and the paths to both the fasta file and the working directory.  In this example, the job that is submitted to the SLURM scheduler might look like:
     19
     20{{{
     21#!/bin/bash
     22
     23#SBATCH --job-name=AFbatch
     24#SBATCH --nodes=1 # ensure cores are on one node
     25#SBATCH --ntasks=1 # run a single task
     26#SBATCH --cpus-per-task=8 # number of cores/threads requested.
     27#SBATCH --mem=64gb # memory requested.
     28#SBATCH --partition=nvidia-A6000-20 # partition (queue) to use
     29#SBATCH --output AFbatch1.5.5.out # write output to file.
     30#SBATCH --gres=gpu:1 # Required for GPU access
     31
     32export PATH="/nfs/apps/test/colab155test/localcolabfold/colabfold-conda/bin:$PATH"
     33
     34workpath=/lab/BaRC_projects/labs/Gehring_Lab/Carly_Martin_ProteinComplex_Feb_2024
     35cd ${workpath}
     36
     37colabfold_batch --msa-mode mmseqs2_uniref_env --model-type alphafold2_multimer_v3 --rank multimer fasta/RALF23_FERONIA_complex.fa RALF23_FERONIA_CF_complex
     38
     39#!/bin/bash
     40
     41#SBATCH --job-name=AF2                  # friendly name for job.
     42#SBATCH --nodes=1                       # ensure cores are on one node
     43#SBATCH --ntasks=1                      # run a single task
     44#SBATCH --cpus-per-task=8               # number of cores/threads requested.
     45#SBATCH --mem=64gb                      # memory requested.
     46#SBATCH --partition=nvidia-t4-20        # partition (queue) to use
     47#SBATCH --output output-%j.out          # %j inserts jobid to STDOUT
     48#SBATCH --gres=gpu:1                    # Required for GPU access
     49
     50export TF_FORCE_UNIFIED_MEMORY=1
     51export XLA_PYTHON_CLIENT_MEM_FRACTION=4
     52
     53export OUTPUT_NAME='model_1'
     54export ALPHAFOLD_DATA_PATH='/alphafold/data.2023b' # Specify ALPHAFOLD_DATA_PATH
     55
     56cd $AF2_WORK_DIR
     57singularity run -B $AF2_WORK_DIR:/af2 -B $ALPHAFOLD_DATA_PATH:/data -B .:/etc --pwd /app/alphafold --nv /alphafold/alphafold_2.3.2.sif --data_dir=/data/ --output_dir=/af2/$FASTA_PATH --fasta_paths=/af2/$FASTA_PATH/$FASTA_NAME --max_template_date=2050-01-01 --db_preset=full_dbs --bfd_database_path=/data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt --uniref30_database_path=/data/uniref30/UniRef30_2023_02 --uniref90_database_path=/data/uniref90/uniref90.fasta --mgnify_database_path=/data/mgnify/mgy_clusters_2022_05.fa --template_mmcif_dir=/data/pdb_mmcif/mmcif_files --obsolete_pdbs_path=/data/pdb_mmcif/obsolete.dat --use_gpu_relax=True --model_preset=monomer --pdb70_database_path=/data/pdb70/pdb70
     58
     59# Email the STDOUT output file to specified address.
     60/usr/bin/mail -s "$SLURM_JOB_NAME $SLURM_JOB_ID" $USERNAME@wi.mit.edu < $AF2_WORK_DIR/output-${SLURM_JOB_ID}.out
     61}}}
     62
     63The following instructions allow you to run AlphaFold-Multimer locally without using ColabFold:
     64
    1465{{{
    1566sbatch --export=ALL,FASTA_NAME=example.fa,USERNAME='user',FASTA_PATH=/path/to/fasta/file,AF2_WORK_DIR=/path/to/working/directory ./RunAlphaFold_2.3.2_slurm.sh