Changes between Version 1 and Version 2 of SOPs/HiChIP
- Timestamp:
- 01/07/21 18:07:26 (4 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
SOPs/HiChIP
v1 v2 1 == Using Hi -C to capture chromatin structure==1 == Using HiChIP experiments to characterize genome-wide chromatin contacts between regulatory elements == 2 2 3 3 4 The [[https:// science.sciencemag.org/content/326/5950/289 | Hi-C method]] Hi-C method generalizes earlier experimental techniques, such as 3C or 5C, for characterizing contacts between specific chromosomal loci, to enable unbiased identification of chromatin interactions across an entire genome. Two software pipelines for analyzing data from Hi-C experiments are [[https://github.com/aidenlab/juicer | juicer]] and [[https://github.com/nservant/HiC-Pro | HiC-Pro]]. An example for using HiC-Pro on Whitehead computing resources with data collected with a kit from Arima Genomics is outlined below. Note that in this example, a reference genome is used that excludes unlocalized or unplaced contigs from the assembly. This choice is taken to ease downstream analysis. Please see the HiC-Pro [[http://nservant.github.io/HiC-Pro/ | documentation]] for additional examples.4 The [[https://www.nature.com/articles/nmeth.3999 | HiChIP method]] combines the [[https://science.sciencemag.org/content/326/5950/289 | Hi-C technique]] for high-throughput chromosome conformation capture with chromatin immunoprecipitation-sequencing (ChIP-seq) to characterize genome-wide chromatin contacts between regulatory elements, such as those marked by specific histone modifications or bound by other proteins (e.g. cohesin). [[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006982 | MAPS]] is an analysis [[https://github.com/ijuric/MAPS | pipeline]] that can be used to extract such significant interactions from HiChIP (or the closely related PLAC-seq) data and visualize them in genome browsers. 5 5 6 6 === Analysis outline === 7 * [#SetConfig Set up the HiC-Proconfiguration file]7 * [#SetConfig Set up the MAPS configuration file] 8 8 * [#Submit Submit data processing to the LSF batch queue] 9 * [#ContactMaps Generate contact map visualizations from processed Hi-C data]10 9 11 10 === [=#SetConfig Set up the configuration file] === 12 11 13 * The configuration file (here called config.txt) dictates essential settings for the analysis. In this example, human samples have been sequenced and an e-mail will be sent to "user at wi.mit.edu" on job completion.12 * The MAPS pipeline is run from a shell script that specifies important configuration settings, including those for file pathways to interpreters and software for manipulating sequencing data. For the specific case of data collected using the HiChIP kit from Arima Genomics, the [[https://github.com/ijuric/MAPS/tree/master/Arima_Genomics | pipeline]] comes with the Arima-MAPS_v2.0.sh shell script, which should be edited before running on the Whitehead cluster to include the following: 14 13 15 14 {{{ 16 # Please change the variable settings below if necessary 17 18 ######################################################################### 19 ## Paths and Settings - Do not edit ! 20 ######################################################################### 21 22 TMP_DIR = tmp 23 LOGS_DIR = logs 24 BOWTIE2_OUTPUT_DIR = bowtie_results 25 MAPC_OUTPUT = hic_results 26 RAW_DIR = rawdata 27 28 ####################################################################### 29 ## SYSTEM - PBS - Start Editing Here !! 30 ####################################################################### 31 N_CPU = 8 32 LOGFILE = hicpro.log 33 34 JOB_NAME = HiC 35 JOB_MEM = 20gb 36 JOB_WALLTIME = 12:00:00 37 JOB_QUEUE = batch 38 JOB_MAIL = user@wi.mit.edu 39 40 ######################################################################### 41 ## Data 42 ######################################################################### 43 44 PAIR1_EXT = _R1 45 PAIR2_EXT = _R2 46 47 ####################################################################### 48 ## Alignment options 49 ####################################################################### 50 51 FORMAT = phred33 52 MIN_MAPQ = 0 53 54 BOWTIE2_IDX_PATH = /nfs/genomes/human_hg38_dec13_no_random/bowtie 55 BOWTIE2_GLOBAL_OPTIONS = --very-sensitive -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder 56 BOWTIE2_LOCAL_OPTIONS = --very-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end --reorder 57 58 ####################################################################### 59 ## Annotation files 60 ####################################################################### 61 62 REFERENCE_GENOME = hg38 63 GENOME_SIZE = /nfs/genomes/human_hg38_dec13_no_random/anno/chromInfo.txt 64 65 ####################################################################### 66 ## Allele specific 67 ####################################################################### 68 69 ALLELE_SPECIFIC_SNP = 70 71 ####################################################################### 72 ## Digestion Hi-C 73 ####################################################################### 74 75 GENOME_FRAGMENT = /nfs/genomes/human_hg38_dec13/arima/hg38_GATC_GANTC.bed 76 LIGATION_SITE = GAATAATC,GAATACTC,GAATAGTC,GAATATTC,GAATGATC,GACTAATC,GACTACTC,GACTAGTC,GACTATTC,GACTGATC,GAGTAATC,GAGTACTC,GAGTAGTC,GAGTATTC,GAGTGATC,GATCAATC,GATCACTC,GATCAGTC,GATCATTC,GATCGATC,GATTAATC,GATTACTC,GATTAGTC,GATTATTC,GATTGATC 77 MIN_FRAG_SIZE = 10 78 MAX_FRAG_SIZE = 100000 79 MIN_INSERT_SIZE = 100 80 MAX_INSERT_SIZE = 1000 81 82 ####################################################################### 83 ## Hi-C processing 84 ####################################################################### 85 86 MIN_CIS_DIST = 87 GET_ALL_INTERACTION_CLASSES = 1 88 GET_PROCESS_SAM = 1 89 RM_SINGLETON = 1 90 RM_MULTI = 1 91 RM_DUP = 1 92 93 ####################################################################### 94 ## Contact Maps 95 ####################################################################### 96 97 BIN_SIZE = 1000 5000 10000 20000 50000 100000 98 MATRIX_FORMAT = upper 99 100 ####################################################################### 101 ## ICE Normalization 102 ####################################################################### 103 MAX_ITER = 100 104 FILTER_LOW_COUNT_PERC = 0.02 105 FILTER_HIGH_COUNT_PERC = 0 106 EPS = 0.1 15 python_path=/usr/bin/python 16 Rscript_path=/usr/bin/Rscript 17 MACS2_path=/usr/local/bin/python3.6/macs2 107 18 }}} 108 109 110 19 111 20 === [=#Submit Submit data processing to the LSF batch queue] === 112 21 113 The essential command to include when submitting HiC-Pro computations to the LSF batch queue is given below, where config.txt is located in the working directory, as are the rawdata and hicproOut subdirectories. As also specified in the (config.txt) configuration file, HiC-Pro will create bowtie_results and hic_results subdirectories beneath hicproOut.22 The command below is an example for how to run MAPS and should be used when submitting these computations to the LSF batch queue. In this example, ChIP peaks are provided to the pipeline, rather than being called by it (using MACS2) and the reference genome (hg19) is for human (-o specifies "organism" here). 114 23 {{{ 115 /usr/local/HiC-Pro_2.11.1/bin/HiC-Pro -c config.txt -i rawdata/ -o hicproOut 24 Arima-MAPS_v2.0.sh -C 0 -I /path/to/fastqFiles/fastqFileNamePrefix -O /path/to/output -m /path/to/peaks/peaks.bed -o hg19 -b /nfs/genomes/human_gp_feb_09_no_random/bwa_alt_name/hg19.fa -t 8 -f 1 116 25 }}} 117 118 === [=#ContactMaps Generate contact map visualizations from processed Hi-C data] ===119 120 Hi-C experiments enable the visualization of chromatin contact maps. Output from HiC-Pro can be translated into contact maps using [[http://bioconductor.org/packages/release/bioc/html/HiTC.html | HiTC]], the [[https://www.aidenlab.org/juicebox/ | juicebox viewer]] or [[https://github.com/kcakdemir/HiCPlotter | HiCPlotter ]]. To use the juicebox viewer, the HiC-Pro output must first be processed using /usr/local/HiC-Pro_2.11.1/bin/utils/hicpro2juicebox.sh. The example below illustrates how to use HiCPlotter to visualize the contact map for the Y chromosome using a 100 kb resolution and naming the graphical output file with a "cellType" prefix.121 {{{122 python2 /usr/local/bin/python2.7/HiCPlotter.py -f /path/to/hic_results/matrix/sample1/iced/100000/sample1_100000_iced.matrix -chr chrY -o cellType -n " " -r 100000 -tri 1 -bed /path/to/hic_results/matrix/sample1/raw/100000/sample1_100000_abs.bed -mm 6123 }}}