Changes between Initial Version and Version 1 of SOPs/rna-seq-diff-expressions/DESeq


Ignore:
Timestamp:
01/23/13 16:49:43 (12 years ago)
Author:
trac
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOPs/rna-seq-diff-expressions/DESeq

    v1 v1  
     1=== Using DESeq ===
     2  * For experiments with or without replication
     3  * See [[http://www.bioconductor.org/packages/devel/bioc/html/DESeq.html|the DESeq home page]] for official documentation
     4  * Also see our [[http://jura.wi.mit.edu/bio/education/R2011/|Hot Topics RNA-Seq vignette]] (session 3, third part) for another discussion of the use of DESeq.
     5  * Package summary: "Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution"
     6  * From the DESeq publication: "DESeq owes its basic idea to edgeR, yet differs in several aspects."
     7  * Input is also a matrix of counts, with gene identifiers used as row names.
     8  * Sample code to use __with__ replication:
     9 
     10{{{
     11 # Use package
     12 library(DESeq)
     13 # Read counts
     14 countsTable = read.delim("Gene_counts.txt")
     15 # Describe groups
     16 groups = c(rep("C",3), rep("T", 3))
     17 # Make a CountDataSet
     18 cds = newCountDataSet(countsTable, groups)
     19 # Estimate effective library size
     20 cds = estimateSizeFactors(cds)
     21 # Core assumption of the method: variance is a function of expression level
     22 # Estimate variance for each gene
     23 cds = estimateDispersions(cds)
     24 # Do stats based on a negative binomial distribution
     25 results = nbinomTest(cds, "T", "C")
     26 write.table(results, file="DESeq_output.txt", sep="\t", quote=F)
     27}}}
     28
     29 *  Sample code to use __without__ replication:
     30
     31{{{
     32# Show that all samples are different
     33 conds = c("a", "b", "c", "d", "e", "f")
     34}}}
     35
     36
     37    * Then apply the same code as above except for ''estimateVarianceFunctions()'':
     38         * ''cds = estimateVarianceFunctions(cds, method='blind')''
     39
     40    * Make desired comparison
     41         * ''results = nbinomTest(cds, "a", "b")''