Version 14 (modified by 6 years ago) ( diff ) | ,
---|
Manipulating VCF files
Create a VCF (variant call format) file [with about any program that identifies variants], such as
- samtools' mpileup+bcftools:
# One file of mapped reads samtools mpileup -uf indexed_genome My_mapped_reads.bam | bcftools view -bvcg - >| My_mapped_reads.raw.bcf # Multiple files of mapped reads samtools mpileup -uf indexed_genome *.bam | bcftools view -bvcg - >| Multiple_samples.raw.bcf
Convert from BCF (binary version of VCF) to VCF:
bcftools view My_mapped_reads.raw.bcf > My_mapped_reads.raw.vcf
Convert from VCF to BCF:
bcftools view -bS -D chr_list.txt My_mapped_reads.raw.vcf > My_mapped_reads.raw.bcf
Merge multiple VCF files -- works on raw VCF files but apparently not with those processed by vcf-annotate
# For each VCF file: bgzip Variants_sample_A.raw.vcf tabix -p vcf Variants_sample_A.raw.vcf.gz
Merge multiple bgzipped, tabixed files:
vcf-merge *.raw.vcf.gz >| Variants_all_samples.raw.vcf
Annotate a VCF file using vcf-annotate
# Apply all filters with default values: vcf-annotate -f + Variants_all_samples.raw.vcf > Variants_all_samples.withTags.vcf # Apply all filters with default values except for specified ones (MinAB(a) = 10; MinDP(b) = 20): vcf-annotate -f +/a=10/d=20 Variants_all_samples.raw.vcf > Variants_all_samples.withTags.vcf # Add custom filter(s) as described in file "My_filters.txt": vcf-annotate -f My_filters.txt Variants_all_samples.raw.vcf > Variants_all_samples.withTags.vcf
For the last command, My_filters.txt contains a filter (such as an example one that calculates PLdiff values for 1/1 - 0/0 and 1/1 - 0/1, making sure that each difference is greater than 20). In this case, the filter is designed for selection, rather than filtering out.
For more examples, go to vcf-annotate and click on "Read even more".
{ tag => 'FORMAT/PL', name => 'GoodPLdiff', desc => 'Homozygote alternate and PLdiff greater than 20', apply_to => 'all', test => sub { for my $pl (@$MATCH) { my @pls = split(/,/,$pl); if ( ($pls[2]-$pls[0])>20 && ($pls[1]-$pls[0])>20 ) { return $FAIL; } } return $PASS; }, },
Similar sorts of tasks can be performed with SnpSift's filter command, like
# Get sites where first sample is reference and the second sample is homozygous for the variant cat Variants.vcf | java -jar SnpSift.jar filter "isRef(GEN[0]) & isHom(GEN[1]) & isVariant(GEN[1])" > Selected_variants.vcf
Annotate variants with SNP IDs (if they overlap known SNPs)
# Index VCF file of SNPs (or other annotations) bgzip dbSNP.version.vcf tabix -p vcf dbSNP.version.vcf.gz # Use annotation file to add info to ID column (if there's overlap between variant and annotation) vcf-annotate -a dbSNP.version.vcf.gz -c CHROM,POS,ID,-,-,-,-,- -d key=INFO,ID=RS_ID,Number=1,Type=Integer,Description="SNPs from a subset of dbSNP" < My_variants.hg38.vcf > My_variants.hg38.dbSNP.vcf
See tabix for how to index BED or other file types. See vcf-annotate for details of last command.
Sort by chromosome and then coordinates
vcf-sort Variants.vcf > Variants.sorted.vcf
Validate VCF file (for use with GATK, for example)
java -jar /usr/local/gatk/GenomeAnalysisTK.jar -T ValidateVariants -R /path/to/indexed/genome --variant:VCF SNPs.vcf
Convert from VCF to bed (using the BEDOPS toolkit):
vcf2bed < my_variants.vcf > my_variants.bed
Filter vcf with snpSift Filter function
# Only keep the variants with DV (number of high-quality non-reference bases) at least 1 in both the 1st and 2nd samples: java -jar /nfs/BaRC/apps/snpEff/Version_4/SnpSift.jar filter " (GEN[0].DV>=1) & (GEN[1].DV>=1)" foo.vcf > s1.DVabove1.plus.s2.DVabove1.vcf
Extract fields from a VCF file to a TXT, tab separated format with snpSift extractFields function
# Extract chromosome, position, reference base(s), alternate bases(s), all the samples' ADF and ADR (number of high-quality ref-fwd, alt-fwd, ref-reverse, and alt-reverse bases): java -jar SnpSift.jar extractFields foo.vcf CHROM POS REF ALT "GEN[*].ADF" "GEN[*].ADR" > Foo.ADF.ADR.vcf # Similar command, but extract and split all ADF and ADR fields java -jar SnpSift.jar extractFields foo.vcf CHROM POS REF ALT "GEN[*].ADF[*]" "GEN[*].ADR[*]" > Foo.ADF.ADR.split.vcf