Version 28 (modified by 4 years ago) ( diff ) | ,
---|
SAM/BAM quality control: Analyzing short read quality (after mapping)
Remove Duplicates
- Remove duplicates, for eg. from PCR
#samtools command samtools rmdup [-sS] <input.srt.bam> <output.bam> -s or -S depending on PE data or not
Determining the paired-end insert size for DNA samples
If paired-end insert size or distance is unknown or need to be verified, it can be extracted from a BAM/SAM file after running Bowtie.
When mapping with bowtie (or another mapper), the insert size can often be included as an input parameter (example for bowtie: -X 500), which can help with mapping. See our mapping SOP for mapping details.
Method 1: Get insert sizes from BAM file
# Using a SAM file (at Unix command prompt) awk -F "\t" '$9 > 0 {print $9}' s_1_bowtie.sam > s_1_insert_sizes.txt # Using a BAM file (at Unix command prompt) samtools view s_1_bowtie.bam | awk -F"\t" '$9 > 0 {print $9}' > s_1_insert_sizes.txt # and then process column of numbers with R (or Excel) # In R Session sizeFile = "s_1_insert_sizes.txt" sample.name = "My paired reads" distance = read.delim(sizeFile, h=F)[,1] pdf(paste(sample.name, "insert.size.histogram.pdf", sep="."), w=11, h=8.5) hist(distance, breaks=200, col="wheat", main=paste("Insert sizes for", sample.name), xlab="length (nt)") dev.off()
Method 2: Calculate insert sizes with CollectInsertSizeMetrics function from picard. This is also a good approximation for RNA samples.
# # I=File Input SAM or BAM file. (Required) # O=File File to write the output to. (Required) # H=File File to write insert size histogram chart to. (Required) # output: CollectInsertSizeMetrics.txt: values for -r and --mate-std-dev can be found in this text file # CollectInsertSizeMetrics_hist.pdf: insert size histogram (graphic representation) bsub java -jar /usr/local/share/picard-tools/picard.jar CollectInsertSizeMetrics I=foo.bam O=CollectInsertSizeMetrics.txt H=CollectInsertSizeMetrics_hist.pdf
You might need to specify a different java path if above command is not working. On local tak, you can use /usr/local/jre1.8/bin/java
QC to get a (visual) summary of mapping statistics. For eg. coverage/distribution of mapped reads across the genome or transcriptome
Use Picard CollectRnaSeqMetrics.jar to find coverage across gene body for 5' or 3' bias
[RNA-seq only] Get global coverage profile across transcripts
Do reads come from across the length of a typical transcript, or is there 3' or 5' bias (where most reads come from one end of a typical transcript)?
One way to look at this is with Picard's CollectRnaSeqMetrics tool
# Usage: java -jar picard.jar CollectRnaSeqMetrics INPUT=bamFile REF_FLAT=refFlatFile STRAND_SPECIFICITY=NONE OUTPUT=outputFile CHART_OUTPUT=output.pdf VALIDATION_STRINGENCY=SILENT # Example command java -jar /usr/local/share/picard-tools/picard.jar CollectRnaSeqMetrics INPUT=WT.bam REF_FLAT=/nfs/genomes/mouse_mm10_dec_11_no_random/anno/refFlat.txt STRAND_SPECIFICITY=NONE OUTPUT=QC_metrics/WT.RnaSeqMetrics.txt CHART_OUTPUT=QC_metrics/WT.RnaSeqMetrics.pdf VALIDATION_STRINGENCY=SILENT
The VALIDATION_STRINGENCY=SILENT option will keep the program from crashing if it finds something unexpected. The default: VALIDATION_STRINGENCY=STRICT
QualiMap can be used on DNA or RNA-Seq to get summary of mapping and coverage/distribution
# For Graphical interface (with GUI access to all tools) qualimap # Full command on the command line: # Before submitting to cluster unset DISPLAY bsub "qualimap bamqc -bam myFile.bam -outdir output_qualimap" # For huge data, you can increase memory with --java-mem-size="4800M" to avoid OutOfMemoryError: Java heap space # For rnaseq QC bsub "qualimap rnaseq -bam myFile.bam -gtf Homo_sapiens.GRCh37.72.canonical.gtf -outdir output_qualimap_rnaseq -p non-strand-specific" # For counts QC (after using htseq-count or a similar program to generate a matrix of counts) qualimap counts -d countsqc_input.txt -c -s HUMAN -outdir counts_qc #Format of countsqc_input.txt (below), totalCounts.txt is a matrix of counts; header lines must be commented "#" and species is human or mouse only. #Sample Condition Path Column HMLE1 HMLE totalCounts.txt 2 HMLE2 HMLE totalCounts.txt 3 HMLE3 HMLE totalCounts.txt 4 N81 N8 totalCounts.txt 5 N82 N8 totalCounts.txt 6 N83 N8 totalCounts.txt 7
RSeQC is a RNA-Seq quality control package for getting mapping statistics (eg. unique/multi-mapped reads)
bam_stat.py -i myFile.bam # Or run on a folder of BAMs for bamFile in `/bin/ls *.bam`; do bsub "bam_stat.py -i $bamFile > $bamFile.bam_stat.txt"; done
Use infer_experiment.py from the RseQC package to check if/how your RNA-seq reads are stranded.
# Command line: bsub "infer_experiment.py -i My_sample.accepted_hits.bam -r human_genes.bed > My_sample.infer_experiment.out.txt" -i INPUT_FILE in SAM or BAM format -r Reference gene models in bed format (converted from GTF file). --library-type=fr-unstranded --library-type=fr-firststrand --library-type=fr-secondstrand # sample output on strand-specific PE reads (since the first fraction is much larger than the second fraction): This is PairEnd Data Fraction of reads explained by "1++,1--,2+-,2-+": 0.9807 Fraction of reads explained by "1+-,1-+,2++,2--": 0.0193 Fraction of reads explained by other combinations: 0.0000 # For gene counting: (featurecounts, use -p -s 1; htseq-count, use --stranded=yes); mapping with TopHat should have been performed with --library-type=fr-secondstrand. # sample output on strand-specific PE reads (since the second fraction is much larger than the first fraction): This is PairEnd Data Fraction of reads explained by "1++,1--,2+-,2-+": 0.0193 Fraction of reads explained by "1+-,1-+,2++,2--": 0.9807 Fraction of reads explained by other combinations: 0.0000 # For gene counting: (featurecounts, use -p -s 2; htseq-count, use --stranded=reverse); mapping with TopHat should have been performed with --library-type=fr-firststrand. # sample output on non-stranded PE reads (since both fractions are about the same): This is PairEnd Data Fraction of reads explained by "1++,1--,2+-,2-+": 0.5103 Fraction of reads explained by "1+-,1-+,2++,2--": 0.4897 Fraction of reads explained by other combinations: 0.0000 # For gene counting: (featurecounts, use -p -s 0; htseq-count, use --stranded=no); mapping with TopHat should have been performed with --library-type=fr-unstranded. #sample output on stranded SE reads: This is SingleEnd Data Fraction of reads failed to determine: 0.0068 Fraction of reads explained by "++,--": 0.9865 Fraction of reads explained by "+-,-+": 0.0068 # For gene counting: (featurecounts, use -s 1; htseq-count, use --stranded=yes; mapping with TopHat should have been performed with --library-type=fr-secondstrand. #sample output on stranded SE reads: This is SingleEnd Data Fraction of reads failed to determine: 0.0068 Fraction of reads explained by "++,--": 0.0068 Fraction of reads explained by "+-,-+": 0.9865 # For gene counting: (featurecounts, use -s 2; htseq-count, use --stranded=reverse; mapping with TopHat should have been performed with --library-type=fr-firststrand. For paired-end RNA-seq, there are two different ways to strand reads: i) 1++,1--,2+-,2-+ read1 mapped to '+' strand indicates parental gene on '+' strand read1 mapped to '-' strand indicates parental gene on '-' strand read2 mapped to '+' strand indicates parental gene on '-' strand read2 mapped to '-' strand indicates parental gene on '+' strand ii) 1+-,1-+,2++,2-- read1 mapped to '+' strand indicates parental gene on '-' strand read1 mapped to '-' strand indicates parental gene on '+' strand read2 mapped to '+' strand indicates parental gene on '+' strand read2 mapped to '-' strand indicates parental gene on '-' strand For single-end RNA-seq, there are two different ways to strand reads: i) ++,-- read mapped to '+' strand indicates parental gene on '+' strand read mapped to '-' strand indicates parental gene on '-' strand ii) +-,-+ read mapped to '+' strand indicates parental gene on '-' strand read mapped to '-' strand indicates parental gene on '+' strand
Figure from Tophat/Bowtie library options
PE Reads Orientation
Most PE reads (from Illumina) should be FR (--> <--), others include FF (--> --> or <-- <--), or RF (<-- -->) and these might be from structural variation.
Graphically analyze read duplication
The R/Bioconductor package dupRadar can do this, analyzing a BAM file that has had duplicates flagged (such as with Picard's MarkDuplicates tool).
A set of commands can be run with an R script by the package authors available from their Using the dupRadar package page.
A BaRC script (/nfs/BaRC_Public/BaRC_code/R/dupRadar/dupRadar.R) does both the duplicate marking and the analysis with a command like
# Usage: ./dupRadar.R <file.bam> <genes.gtf> <stranded=[no|yes|reverse]> paired=[yes|no] outdir=./ threads=1 bsub /nfs/BaRC_Public/BaRC_code/R/dupRadar/dupRadar.R WT.bam /nfs/genomes/mouse_mm10_dec_11_no_random/gtf/Mus_musculus.GRCm38.81.canonical.gtf stranded=no paired=yes outdir=dupRadar_out threads=1
Interpreting quality control issues
See QCFAIL.com from the Babraham Institute
Attachments (1)
- tophat_library.png (11.8 KB ) - added by 9 years ago.
Download all attachments as: .zip