|   | 1 | == One-way ANOVA == | 
          
          
            |   | 2 |  | 
          
          
            |   | 3 | See the [http://www.graphpad.com/support/faqid/1745/ Prism help page] for some general considerations. | 
          
          
            |   | 4 |  | 
          
          
            |   | 5 | ==== Reading in Data ==== | 
          
          
            |   | 6 |  | 
          
          
            |   | 7 |  | 
          
          
            |   | 8 |   * Use read.* or create appropriate dataframe | 
          
          
            |   | 9 |  | 
          
          
            |   | 10 |  | 
          
          
            |   | 11 | {{{ | 
          
          
            |   | 12 |   #Eg. testing 4 different strains by creating a dataframe | 
          
          
            |   | 13 |   PA7<-c(56,60,44,53) | 
          
          
            |   | 14 |   PA7_dGra15<-c(29,38,18,35) | 
          
          
            |   | 15 |   PA7_Rop16l<-c(11,25,7,18) | 
          
          
            |   | 16 |   PA7_Rop16l_dGra15<-c(26,44,20,32) | 
          
          
            |   | 17 |   strains<-data.frame(PA7, PA7_dGra15, PA7_Rop16l, PA7_Rop16l_dGra15) | 
          
          
            |   | 18 |   strains_stack<-stack(strains) | 
          
          
            |   | 19 |    | 
          
          
            |   | 20 |   #Eg. from Mathias' Stats Lecture | 
          
          
            |   | 21 |   brainweight <- read.csv("brain_weights.csv",header=TRUE) | 
          
          
            |   | 22 |  | 
          
          
            |   | 23 | }}} | 
          
          
            |   | 24 |    | 
          
          
            |   | 25 | ==== Creating an ANOVA Table ==== | 
          
          
            |   | 26 |   * Use the command //anova// or //aov// with summary.  The first arg is the dependent var, followed by ~, and then by independent variable(s) | 
          
          
            |   | 27 |  | 
          
          
            |   | 28 |   | 
          
          
            |   | 29 | {{{ | 
          
          
            |   | 30 |  #column headers were not given above, default are "values" and "ind" | 
          
          
            |   | 31 |   anova(lm(values~ind, data=strains_stack)) | 
          
          
            |   | 32 |   #or save to file | 
          
          
            |   | 33 |   x<-anova(lm(values~ind, data=strains_stack)) | 
          
          
            |   | 34 |   write.table(x, file="strains1_anova.txt", quote=F) | 
          
          
            |   | 35 |    | 
          
          
            |   | 36 |   #Eg. from Mathias' Stats Lecture | 
          
          
            |   | 37 |   summary(aov(Weight~Group)) | 
          
          
            |   | 38 |  | 
          
          
            |   | 39 | }}} | 
          
          
            |   | 40 |  | 
          
          
            |   | 41 | == Post-Test: Comparing All Pairs of Means == | 
          
          
            |   | 42 |  | 
          
          
            |   | 43 | ==== Tukey ==== | 
          
          
            |   | 44 |     * "Tukey's method is more conservative but may miss real differences too often" - Intuitive Biostatistics (p.259) | 
          
          
            |   | 45 |  | 
          
          
            |   | 46 |  | 
          
          
            |   | 47 | {{{ | 
          
          
            |   | 48 |   TukeyHSD(aov(values~ind, data=strains_stack)) | 
          
          
            |   | 49 |    | 
          
          
            |   | 50 |   #Eg. from Mathias' Stats Lecture | 
          
          
            |   | 51 |   TukeyHSD(aov(brainweight$Weight~brainweight$Group)) | 
          
          
            |   | 52 |    | 
          
          
            |   | 53 |  | 
          
          
            |   | 54 | }}} | 
          
          
            |   | 55 |  | 
          
          
            |   | 56 | ==== Dunnett ==== | 
          
          
            |   | 57 |   * Useful if you want to compare a reference group to all other groups (instead of doing an all vs. all comparison)  | 
          
          
            |   | 58 |   * The first group is used as the reference group, so name your groups so this is the case. | 
          
          
            |   | 59 |  | 
          
          
            |   | 60 |  | 
          
          
            |   | 61 | {{{ | 
          
          
            |   | 62 |   library(multcomp) | 
          
          
            |   | 63 |   summary(glht(lm(Weight ~ Group, data=brainweight), linfct=mcp(Group="Dunnett"))) | 
          
          
            |   | 64 |  | 
          
          
            |   | 65 | }}} |