Changes between Initial Version and Version 1 of SOPs/anova


Ignore:
Timestamp:
01/23/13 16:49:43 (12 years ago)
Author:
trac
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • SOPs/anova

    v1 v1  
     1== One-way ANOVA ==
     2
     3See the [http://www.graphpad.com/support/faqid/1745/ Prism help page] for some general considerations.
     4
     5==== Reading in Data ====
     6
     7
     8  * Use read.* or create appropriate dataframe
     9
     10
     11{{{
     12  #Eg. testing 4 different strains by creating a dataframe
     13  PA7<-c(56,60,44,53)
     14  PA7_dGra15<-c(29,38,18,35)
     15  PA7_Rop16l<-c(11,25,7,18)
     16  PA7_Rop16l_dGra15<-c(26,44,20,32)
     17  strains<-data.frame(PA7, PA7_dGra15, PA7_Rop16l, PA7_Rop16l_dGra15)
     18  strains_stack<-stack(strains)
     19 
     20  #Eg. from Mathias' Stats Lecture
     21  brainweight <- read.csv("brain_weights.csv",header=TRUE)
     22
     23}}}
     24 
     25==== Creating an ANOVA Table ====
     26  * Use the command //anova// or //aov// with summary.  The first arg is the dependent var, followed by ~, and then by independent variable(s)
     27
     28 
     29{{{
     30 #column headers were not given above, default are "values" and "ind"
     31  anova(lm(values~ind, data=strains_stack))
     32  #or save to file
     33  x<-anova(lm(values~ind, data=strains_stack))
     34  write.table(x, file="strains1_anova.txt", quote=F)
     35 
     36  #Eg. from Mathias' Stats Lecture
     37  summary(aov(Weight~Group))
     38
     39}}}
     40
     41== Post-Test: Comparing All Pairs of Means ==
     42
     43==== Tukey ====
     44    * "Tukey's method is more conservative but may miss real differences too often" - Intuitive Biostatistics (p.259)
     45
     46
     47{{{
     48  TukeyHSD(aov(values~ind, data=strains_stack))
     49 
     50  #Eg. from Mathias' Stats Lecture
     51  TukeyHSD(aov(brainweight$Weight~brainweight$Group))
     52 
     53
     54}}}
     55
     56==== Dunnett ====
     57  * Useful if you want to compare a reference group to all other groups (instead of doing an all vs. all comparison)
     58  * The first group is used as the reference group, so name your groups so this is the case.
     59
     60
     61{{{
     62  library(multcomp)
     63  summary(glht(lm(Weight ~ Group, data=brainweight), linfct=mcp(Group="Dunnett")))
     64
     65}}}